56,035 research outputs found

    Bound states on the lattice with partially twisted boundary conditions

    Get PDF
    We propose a method to study the nature of exotic hadrons by determining the wave function renormalization constant ZZ from lattice simulations. It is shown that, instead of studying the volume-dependence of the spectrum, one may investigate the dependence of the spectrum on the twisting angle, imposing twisted boundary conditions on the fermion fields on the lattice. In certain cases, e.g., the case of the DKDK bound state which is addressed in detail, it is demonstrated that the partial twisting is equivalent to the full twisting up to exponentially small corrections

    Light meson mass dependence of the positive parity heavy-strange mesons

    Get PDF
    We calculate the masses of the resonances D_{s0}^*(2317) and D_{s1}(2460) as well as their bottom partners as bound states of a kaon and a D^*- and B^*-meson, respectively, in unitarized chiral perturbation theory at next-to-leading order. After fixing the parameters in the D_{s0}^*(2317) channel, the calculated mass for the D_{s1}(2460) is found in excellent agreement with experiment. The masses for the analogous states with a bottom quark are predicted to be M_{B^*_{s0}}=(5696\pm 40) MeV and M_{B_{s1}}=(5742\pm 40) MeV in reasonable agreement with previous analyses. In particular, we predict M_{B_{s1}}-M_{B_{s0}^*}=46\pm 1 MeV. We also explore the dependence of the states on the pion and kaon masses. We argue that the kaon mass dependence of a kaonic bound state should be almost linear with slope about unity. Such a dependence is specific to the assumed molecular nature of the states. We suggest to extract the kaon mass dependence of these states from lattice QCD calculations.Comment: 10 page

    Social interactions through the eyes of macaques and humans

    Get PDF
    Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions) to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression). Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys’ gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of social attention between rhesus macaques and humans

    Long-distance structure of the X(3872)

    Get PDF
    We investigate heavy quark symmetries for heavy meson hadronic molecules, and explore the consequences of assuming the X(3872) and Zb(10610)Z_b(10610) as an isoscalar DDˉD\bar D^* and an isovector BBˉB\bar B^* hadronic molecules, respectively. The symmetry allows to predict new hadronic molecules, in particular we find an isoscalar 1++1^{++} BBˉB\bar B^* bound state with a mass about 10580 MeV and the isovector charmonium partners of the Zb(10610)Z_b(10610) and the Zb(10650)Z_b(10650) states. Next, we study the X(3872)D0Dˉ0π0X(3872) \to D^0 \bar D^0\pi^0 three body decay. This decay mode is more sensitive to the long-distance structure of the X(3872) resonance than its J/ψππJ/\psi\pi\pi and J/ψ3πJ/\psi3\pi decays, which are mainly controlled by the short distance part of the X(3872) molecular wave function. We discuss the D0Dˉ0D^0 \bar D^0 final state interactions, which in some situations become quite important. Indeed in these cases, a precise measurement of this partial decay width could provide precise information on the interaction strength between the D()Dˉ()D^{(*)}\bar D^{(*)} charm mesons.Comment: Talk presented at the "XI International Conference on Hyperons, Charm and Beauty Hadrons (BEACH 2014)", Birmingham (U.K.), July 201

    Heavy-to-light scalar form factors from Muskhelishvili-Omn\`es dispersion relations

    Full text link
    By solving the Muskhelishvili-Omn\`es integral equations, the scalar form factors of the semileptonic heavy meson decays DπˉνD\to\pi \bar \ell \nu_\ell, DKˉˉνD\to \bar{K} \bar \ell \nu_\ell, Bˉπνˉ\bar{B}\to \pi \ell \bar\nu_\ell and BˉsKνˉ\bar{B}_s\to K \ell \bar\nu_\ell are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omn\`es matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q2=0q^2=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q2=0q^2=0, we obtain Vcd=0.244±0.022|V_{cd}|=0.244\pm 0.022, Vcs=0.945±0.041|V_{cs}|=0.945\pm 0.041 and Vub=(4.3±0.7)×103|V_{ub}|=(4.3\pm 0.7)\times10^{-3} for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q2=0q^2=0: f+Dη(0)=0.01±0.05|f_+^{D\to\eta}(0)|=0.01\pm 0.05, f+DsK(0)=0.50±0.08|f_+^{D_s\to K}(0)|=0.50 \pm 0.08, f+Dsη(0)=0.73±0.03|f_+^{D_s\to\eta}(0)|=0.73\pm 0.03 and f+Bˉη(0)=0.82±0.08|f_+^{\bar{B}\to\eta}(0)|=0.82 \pm 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q2q^2-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.Comment: includes further discussions and references; matches the accepted versio

    Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time

    Full text link
    Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model under the Newton-Hooke contraction of the BdSBdS spacetime with respect to the transformation group, algebra and geometry. It is shown that in Newton-Hooke space-time, there are inertial-type coordinate systems and inertial-type observers, which move along straight lines with uniform velocity. And they are invariant under the Newton-Hooke group. In order to determine uniquely the Newton-Hooke limit, we propose the Galilei-Hooke's relativity principle as well as the postulate on Newton-Hooke universal time. All results are readily extended to the Newton-Hooke model as a contraction of Beltrami-anti-de Sitter spacetime with negative cosmological constant.Comment: 25 pages, 3 figures; some misprints correcte

    Indirect exchange of magnetic impurities in zigzag graphene ribbon

    Full text link
    We use quantum Monte Carlo method to study the indirect coupling between two magnetic impurities on the zigzag edge of graphene ribbon, with respect to the chemical potential μ\mu. We find that the spin-spin correlation between two adatoms located on the nearest sites in the zigzag edge are drastically suppressed around the zero-energy. As we switch the system away from half-filling, the antiferromagnetic correlation is first enhanced and then decreased. If the two adatoms are adsorbed on the sites belonging to the same sublattice, we find similar behavior of spin-spin correlation except for a crossover from ferromagnetic to antiferromagentic correlation in the vicinity of zero-energy. We also calculated the weight of different components of d-electron wave function and local magnet moment for various values of parameters, and all the results are consistent with those of spin-spin correlation between two magnetic impurities.Comment: 3 pages, 4 figures, conference proceedin

    Non-magnetic pair-breaking effect on La(Fe_{1-x}Zn_{x})AsO_{0.85} studied by NMR and NQR

    Get PDF
    75^{75}As and 139^{139}La NMR and nuclear quadrupole resonance (NQR) studies on Zn-substituted LaFeAsO0.85_{0.85} have been performed to investigate the Zn-impurity effects microscopically. Although superconductivity in LaFeAsO0.85_{0.85} disappears by 3% Zn substitution, we found that NMR/NQR spectra and NMR physical quantities in the normal state are hardly changed, indicating that the crystal structure and electronic states are not modified by Zn substitution. Our results suggest that the suppression of superconductivity by Zn substitution is not due to the change of the normal-state properties, but due to strong non-magnetic pair-breaking effect to superconductivity.Comment: 5 pages, 4 figures, This paper was chosen as "Paper of Editors' Suggestion
    corecore